МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ГРАЖДАНСКОЙ АВИАЦИИ

Ю. И. Дементьев, А. В. Самохин

МАТЕМАТИКА

ПОСОБИЕ
по выполнению практических заданий

для студентов I курса
направления 42.03.01
очной формы обучения

Москва-2015
ФЕДЕРАЛЬНОЕ АГЕНТСТВО ВОЗДУШНОГО ТРАНСПОРТА
ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ
БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ
ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ
МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ
УНИВЕРСИТЕТ ГРАЖДАНСКОЙ АВИАЦИИ (МГТУ ГА)

Кафедра высшей математики
Ю. И. Дементьев, А. В. Самохин

МАТЕМАТИКА

ПОСОБИЕ
по выполнению практических заданий

для студентов I курса
направления 42.03.01
очной формы обучения

Москва-2015
ББК 51
Д30
Рецензент кандидат физ.-мат. наук, доцент О. Г. Илларионова
Дементьев Ю. И., Самохин А. В.
Данное пособие издается в соответствии с рабочей программой учебной дисциплины «Математика» по учебному плану для студентов I курса направления 42.03.01 очной формы обучения.
Пособие охватывает разделы математики, изучаемые студентами на первом курсе.
В пособии содержатся варианты контрольных домашних заданий и справочные материалы.
Рассмотрено и одобрено на заседаниях кафедры 15.09.2015 и методического совета 20.10.2015.
Пособие издается в авторской редакции.

Подписано в печать 24.11.2015 г.
Печать офсетная Формат 60 х 84/16 2,0 уч.-изд. л.
1,6 усл.печ.л. Заказ № 38 Тираж 30 экз.

Московский государственный технический университет ГА
125993 Москва, Кронштадтский бульвар, д. 20
Редакционно-издательский отдел
125493 Москва, ул. Пулковская, д. 6а
© Московский государственный технический университет ГА, 2015
КОНТРОЛЬНОЕ ДОМАШНЕЕ ЗАДАНИЕ №1

Алгебра

Задание 1. Даны матрицы A, B, C. Найти $2A - 3B$, $A \cdot B$, $A \cdot C$.

1.1. $A = \begin{pmatrix} 2 & 3 & 1 \\ 3 & 1 & 4 \\ 2 & 1 & -1 \end{pmatrix}$, $B = \begin{pmatrix} 3 & 2 & -1 \\ 1 & 3 & 2 \\ 2 & 1 & -1 \end{pmatrix}$, $C = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$.

1.2. $A = \begin{pmatrix} 2 & 3 & 1 \\ -4 & -7 & 5 \end{pmatrix}$, $B = \begin{pmatrix} 1 & 2 & 3 \\ 1 & -4 & -7 \end{pmatrix}$, $C = \begin{pmatrix} -1 \\ 2 \\ 3 \end{pmatrix}$.

1.3. $A = \begin{pmatrix} 1 & 3 & 1 \\ -7 & -4 & 5 \end{pmatrix}$, $B = \begin{pmatrix} 0 & 1 & 3 \\ 4 & -7 & -4 \end{pmatrix}$, $C = \begin{pmatrix} -1 \\ 3 \end{pmatrix}$.

1.4. $A = \begin{pmatrix} -4 & 3 & -4 \\ 1 & -1 & 4 \end{pmatrix}$, $B = \begin{pmatrix} 3 & -1 & 4 \\ 2 & 1 & 0 \end{pmatrix}$, $C = \begin{pmatrix} 1 \\ 3 \end{pmatrix}$.

1.5. $A = \begin{pmatrix} 2 & 1 & 0 \\ -4 & 1 & 7 \end{pmatrix}$, $B = \begin{pmatrix} 3 & -1 & 4 \\ 0 & 2 & 1 \end{pmatrix}$, $C = \begin{pmatrix} -3 \\ 4 \end{pmatrix}$.

1.6. $A = \begin{pmatrix} 2 & -4 & 3 \\ 1 & -2 & 1 \\ 0 & 1 & -1 \end{pmatrix}$, $B = \begin{pmatrix} 1 & -4 & 2 \\ 0 & 3 & 1 \\ 4 & -7 & -5 \end{pmatrix}$, $C = \begin{pmatrix} -2 \\ 1 \\ 2 \end{pmatrix}$.

1.7. $A = \begin{pmatrix} 4 & 3 & 1 \\ 2 & 1 & 4 \\ 1 & 1 & 3 \end{pmatrix}$, $B = \begin{pmatrix} 2 & 3 & 0 \\ 1 & 1 & 2 \\ 0 & 0 & 1 \end{pmatrix}$, $C = \begin{pmatrix} 4 \\ 3 \\ 1 \end{pmatrix}$.
1.8. \[A = \begin{pmatrix} -1 & 2 & -1 \\ 4 & 3 & 7 \\ 1 & 2 & -4 \end{pmatrix}, \quad B = \begin{pmatrix} 1 & 2 & -4 \\ 3 & 1 & 1 \\ 1 & 3 & -7 \end{pmatrix}, \quad C = \begin{pmatrix} 3 \\ -1 \\ 2 \end{pmatrix} \]

1.9. \[A = \begin{pmatrix} 2 & 3 & -4 \\ 3 & 2 & -4 \\ -1 & -1 & 5 \end{pmatrix}, \quad B = \begin{pmatrix} 4 & 2 & 1 \\ 3 & 1 & -7 \\ 2 & 2 & 1 \end{pmatrix}, \quad C = \begin{pmatrix} -3 \\ 2 \\ 5 \end{pmatrix} \]

1.10. \[A = \begin{pmatrix} 5 & 2 & 4 \\ -4 & 3 & 3 \\ 3 & -5 & 4 \end{pmatrix}, \quad B = \begin{pmatrix} 1 & -7 & 1 \\ 15 & 3 & -1 \\ 3 & 2 & 4 \end{pmatrix}, \quad C = \begin{pmatrix} 3 \\ 4 \\ 5 \end{pmatrix} \]

1.11. \[A = \begin{pmatrix} 2 & -1 & 1 \\ 3 & 6 & -2 \\ -2 & -4 & 2 \end{pmatrix}, \quad B = \begin{pmatrix} -1 & -3 & -2 \\ 1 & 2 & 1 \\ -2 & 1 & 3 \end{pmatrix}, \quad C = \begin{pmatrix} 3 \\ -1 \\ 4 \end{pmatrix} \]

1.12. \[A = \begin{pmatrix} -2 & -4 & 2 \\ 1 & 3 & -1 \\ 3 & 6 & -2 \end{pmatrix}, \quad B = \begin{pmatrix} 4 & 1 & -2 \\ 4 & -2 & 3 \\ -2 & 4 & 1 \end{pmatrix}, \quad C = \begin{pmatrix} 5 \\ 3 \\ -2 \end{pmatrix} \]

1.13. \[A = \begin{pmatrix} 2 & 1 & 2 \\ -1 & 4 & 2 \\ -5 & 2 & 4 \end{pmatrix}, \quad B = \begin{pmatrix} -3 & -2 & 3 \\ -1 & 3 & -2 \\ -4 & 6 & -5 \end{pmatrix}, \quad C = \begin{pmatrix} 1 \\ 2 \\ -5 \end{pmatrix} \]

1.14. \[A = \begin{pmatrix} 4 & -1 & -3 \\ -1 & 3 & -2 \\ 1 & 2 & -4 \end{pmatrix}, \quad B = \begin{pmatrix} -3 & 1 & 4 \\ 3 & 2 & -4 \\ -2 & 0 & 3 \end{pmatrix}, \quad C = \begin{pmatrix} 5 \\ -1 \\ -3 \end{pmatrix} \]

1.15. \[A = \begin{pmatrix} -2 & 5 & 1 \\ 3 & 4 & -5 \\ 4 & -1 & 5 \end{pmatrix}, \quad B = \begin{pmatrix} -4 & 1 & 3 \\ -1 & 2 & -4 \\ 1 & 2 & -3 \end{pmatrix}, \quad C = \begin{pmatrix} -5 \\ 1 \\ -3 \end{pmatrix} \]
1.16. $A = \begin{pmatrix} -2 & 4 & -2 \\ -1 & -2 & 1 \\ -2 & 3 & -1 \end{pmatrix}$, $B = \begin{pmatrix} 4 & -3 & 2 \\ 2 & -3 & 5 \\ 6 & 2 & 4 \end{pmatrix}$, $C = \begin{pmatrix} -3 \\ 4 \\ -1 \end{pmatrix}$

1.17. $A = \begin{pmatrix} 1 & 3 & 4 \\ 5 & -1 & 3 \\ 4 & -2 & 3 \end{pmatrix}$, $B = \begin{pmatrix} 2 & -2 & -1 \\ -2 & 3 & 2 \\ 1 & 3 & -1 \end{pmatrix}$, $C = \begin{pmatrix} 4 \\ -3 \\ 5 \end{pmatrix}$

1.18. $A = \begin{pmatrix} -2 & 1 & 6 \\ -4 & 2 & 5 \\ -1 & -2 & 3 \end{pmatrix}$, $B = \begin{pmatrix} 3 & -2 & 4 \\ 3 & 0 & -2 \\ 4 & -3 & 2 \end{pmatrix}$, $C = \begin{pmatrix} -2 \\ 6 \\ 1 \end{pmatrix}$

1.19. $A = \begin{pmatrix} 5 & 3 & 6 \\ 3 & -1 & 3 \\ 1 & 3 & -4 \end{pmatrix}$, $B = \begin{pmatrix} -3 & -1 & 2 \\ 2 & -3 & 4 \\ -2 & 1 & -1 \end{pmatrix}$, $C = \begin{pmatrix} 2 \\ -3 \\ 4 \end{pmatrix}$

1.20. $A = \begin{pmatrix} 4 & -2 & 7 \\ 1 & 6 & -3 \\ 4 & -2 & 5 \end{pmatrix}$, $B = \begin{pmatrix} -1 & -6 & 3 \\ -1 & 2 & 4 \\ -3 & 2 & 1 \end{pmatrix}$, $C = \begin{pmatrix} 5 \\ 4 \\ -2 \end{pmatrix}$

1.21. $A = \begin{pmatrix} 1 & -3 & 4 \\ 3 & -2 & 5 \\ 3 & -4 & 1 \end{pmatrix}$, $B = \begin{pmatrix} 7 & -2 & 3 \\ -1 & -6 & 3 \\ -2 & 0 & -1 \end{pmatrix}$, $C = \begin{pmatrix} -4 \\ 5 \\ 1 \end{pmatrix}$

1.22. $A = \begin{pmatrix} 7 & -4 & 3 \\ 2 & -3 & -6 \\ -2 & 4 & -1 \end{pmatrix}$, $B = \begin{pmatrix} -3 & 2 & 1 \\ -1 & 0 & 4 \\ 2 & 5 & -3 \end{pmatrix}$, $C = \begin{pmatrix} -5 \\ -3 \\ 4 \end{pmatrix}$

1.23. $A = \begin{pmatrix} 2 & -1 & 3 \\ 2 & -3 & 4 \\ 3 & 2 & -1 \end{pmatrix}$, $B = \begin{pmatrix} -4 & 5 & -6 \\ 3 & -1 & 2 \\ 6 & -5 & 1 \end{pmatrix}$, $C = \begin{pmatrix} -2 \\ 7 \\ 4 \end{pmatrix}$
1.24. $A = \begin{pmatrix} -2 & 1 & 0 \\ -3 & 2 & 1 \\ -4 & 1 & -2 \end{pmatrix}, \quad B = \begin{pmatrix} 4 & 3 & -2 \\ 4 & -6 & -1 \\ 3 & -1 & 7 \end{pmatrix}, \quad C = \begin{pmatrix} 3 \\ 5 \\ -2 \end{pmatrix}$

1.25. $A = \begin{pmatrix} -1 & -4 & 5 \\ 2 & -5 & 6 \\ 2 & 5 & -3 \end{pmatrix}, \quad B = \begin{pmatrix} 0 & 1 & -3 \\ 3 & 2 & 1 \\ -1 & 3 & 5 \end{pmatrix}, \quad C = \begin{pmatrix} 7 \\ -2 \\ 5 \end{pmatrix}$

1.26. $A = \begin{pmatrix} -1 & 6 & -2 \\ 3 & 0 & -2 \\ 3 & -2 & 7 \end{pmatrix}, \quad B = \begin{pmatrix} 2 & 3 & -3 \\ 2 & 1 & 4 \\ 5 & 1 & -3 \end{pmatrix}, \quad C = \begin{pmatrix} 4 \\ -3 \\ 4 \end{pmatrix}$

1.27. $A = \begin{pmatrix} -3 & 1 & 0 \\ -1 & -2 & 3 \\ -2 & 3 & 1 \end{pmatrix}, \quad B = \begin{pmatrix} 2 & -1 & 4 \\ 3 & 4 & 1 \\ -6 & 4 & 5 \end{pmatrix}, \quad C = \begin{pmatrix} 4 \\ 2 \\ -6 \end{pmatrix}$

1.28. $A = \begin{pmatrix} 3 & 1 & -2 \\ 5 & -2 & 4 \\ 1 & -3 & 5 \end{pmatrix}, \quad B = \begin{pmatrix} 2 & -1 & 4 \\ -1 & 1 & 3 \\ 4 & -2 & 3 \end{pmatrix}, \quad C = \begin{pmatrix} 1 \\ 3 \\ -7 \end{pmatrix}$

1.29. $A = \begin{pmatrix} 2 & -1 & 6 \\ -1 & 5 & 3 \\ -5 & 4 & 1 \end{pmatrix}, \quad B = \begin{pmatrix} -3 & 4 & -2 \\ 3 & 2 & -1 \\ 3 & 2 & -6 \end{pmatrix}, \quad C = \begin{pmatrix} 4 \\ -3 \\ 3 \end{pmatrix}$

1.30. $A = \begin{pmatrix} 3 & 1 & -6 \\ 5 & 2 & -4 \end{pmatrix}, \quad B = \begin{pmatrix} -1 & 2 & 4 \\ 2 & -1 & 3 \end{pmatrix}, \quad C = \begin{pmatrix} 1 \\ -6 \end{pmatrix}$

Задание 2. Решить систему линейных уравнений методом Гаусса.

\[
\begin{align*}
2.1. \quad & \begin{cases}
 x + 2y + 3z = 1 \\
 2x - 3y + 2z = 9 \\
 5x + 8y - z = 7
\end{cases} & \quad 2.2. \quad & \begin{cases}
 x + y - z = -2 \\
 4x - 3y + z = 1 \\
 2x + y - z = 1
\end{cases}
\end{align*}
\]
\begin{align*}
\begin{cases}
2x + y - z = 2 \\
3x + 2y + 2z = -2 \\
x + y - 2z = 1 \\
x + 2y + 3z = 5 \\
2x - y - z = 1 \\
x + 3y + 4z = 6 \\
x + 2y - z = 2 \\
2x - 3y + 2z = 2 \\
3x + y + z = 8 \\
x + y - z = 0 \\
3x + 2y + z = 5 \\
4x - y + 5z = 3 \\
x - 2y + 3z = 1 \\
2x + 3y + 2z = 9 \\
5x - 8y - z = 7 \\
2x - y - z = 2 \\
3x - 2y + 2z = -2 \\
x - y - 2z = 1 \\
x - 2y + 3z = 5 \\
2x + y - z = 1 \\
x - 3y + 4z = 6 \\
x - 2y - z = 2 \\
2x + 3y + 2z = 2 \\
3x - y + z = 8 \\
5x - y - z = 0 \\
5x - y + z = 0 \\
4x + 3y - 2z = 16 \\
x - y - 2z = 1 \\
x - 2y + 3z = 5 \\
2x + y - z = 1 \\
x - 3y + 4z = 6 \\
x - 2y - z = 2 \\
2x + 3y + 2z = 2 \\
3x + 2y - z = 5 \\
x + y - z = 3
\end{cases}
\end{align*}
\begin{align*}
2.3. & \quad 5x - y - z = 0 \\
2.4. & \quad x + 2y + 3z = 14 \\
& \quad 4x + 3y + 2z = 16 \\
& \quad 2x - y + 2z = -4 \\
2.5. & \quad x + y + 2z = -1 \\
& \quad 4x + y + 4z = -2 \\
& \quad 2x + y + 3z = 11 \\
2.6. & \quad 3x + 2y + z = 5 \\
& \quad x + y + z = 3 \\
& \quad 4x + y - 3z = 3 \\
2.7. & \quad 3x + 2y + z = 5 \\
& \quad 4x - y + 5z = 3 \\
& \quad x + y + z = 3 \\
& \quad x + y + z = -2 \\
2.9. & \quad 2x + y + z = 1 \\
& \quad 2x + y - 3z = 3 \\
& \quad x + y + z = 1 \\
2.10. & \quad 8x + 3y - 6z = 2 \\
& \quad x + y - z = 1 \\
2.11. & \quad x + 2y - 3z = 14 \\
& \quad x + 2y - 3z = 14 \\
& \quad 4x - 3y - z = 1 \\
2.12. & \quad 2x + y + z = 1 \\
& \quad 2x + y + z = 1 \\
2.13. & \quad 5x - y + z = 0 \\
& \quad 4x + 3y - 2z = 16 \\
& \quad x + y - 2z = -1 \\
2.14. & \quad 2x - y - 2z = -4 \\
& \quad 4x + y - 4z = -2 \\
& \quad 2x + y - 3z = 11 \\
2.15. & \quad 3x + 2y - z = 5 \\
& \quad x + y - z = 3
Задание 3. Данны координаты вершин A, B, C треугольника ABC. Найти систему неравенств, определяющую множество внутренних точек треугольника. Сделать чертёж.

3.1. $A(4, 1), \quad B(0, -2), \quad C(-5, 10).$
3.2. $A(-7, 3), \quad B(5, -2), \quad C(8, 2).$
3.3. $A(5, -1), \quad B(1, -4), \quad C(-4, 8).$
3.4. $A(-14, 6), \quad B(-2, 1), \quad C(1, 5).$
3.5. $A (6, 0), \quad B (2, -3), \quad C (-3, 9)$.
3.6. $A (-9, 2), \quad B (3, -3), \quad C (6, 1)$.
3.7. $A (7, -4), \quad B (3, -7), \quad C (-2, 5)$.
3.8. $A (-8, 4), \quad B (4, -1), \quad C (7, 3)$.
3.9. $A (3, -3), \quad B (-1, -6), \quad C (-6, 6)$.
3.10. $A (-6, 5), \quad B (6, 0), \quad C (9, 4)$.
3.11. $A (3, -2), \quad B (5, 1), \quad C (4, -8)$.
3.12. $A (6, 1), \quad B (-3, 7), \quad C (8, -1)$.
3.13. $A (-3, 21), \quad B (6, 9), \quad C (3, -5)$.
3.14. $A (7, 2), \quad B (5, 1), \quad C (-6, -4)$.
3.15. $A (-4, -2), \quad B (3, 11), \quad C (-5, 4)$.
3.16. $A (9, -3), \quad B (-4, 1), \quad C (8, 3)$.
3.17. $A (6, -1), \quad B (5, 7), \quad C (-2, 5)$.
3.18. $A (-5, 1), \quad B (7, -3), \quad C (9, 2)$.
3.19. $A (5, -7), \quad B (6, 8), \quad C (-4, 3)$.
3.20. $A (1, -9), \quad B (5, 3), \quad C (-2, 4)$.
3.21. $A (-6, -5), \quad B (8, 4), \quad C (3, -2)$.
3.22. $A (-5, 1), \quad B (9, -2), \quad C (4, 4)$.
3.23. $A (3, -2), \quad B (11, 5), \quad C (-1, 7)$.
3.24. $A (-3, 7), \quad B (-2, 10), \quad C (5, -1)$.
3.25. $A (-6, 1), \quad B (4, 0), \quad C (-3, -8)$.
3.26. $A (9, -4), \quad B (-2, 6), \quad C (3, 1)$.
3.27. $A (5, -2), \quad B (0, 4), \quad C (-5, 7)$.
3.28. $A (-7, 6), \quad B (3, -2), \quad C (9, 1)$.
3.29. $A (5, -8), \quad B (-6, -3), \quad C (1, 4)$.
3.30. $A (-3, 2), \quad B (5, -1), \quad C (-4, -8)$.
КОНТРОЛЬНОЕ ДОМАШНЕЕ ЗАДАНИЕ №2

Математический анализ

Задание 1. Найти пределы.

1.1. a) \(\lim_{x \to \infty} \frac{x + 3x^2}{4 - 2x^2} \)

1.2. a) \(\lim_{x \to \infty} \frac{1 - 6x + 7x^2}{3 - x^2} \)

1.3. a) \(\lim_{x \to \infty} \frac{6x^4 + 2x^2 - 3}{1 - 2x^4} \)

1.4. a) \(\lim_{x \to \infty} \frac{2x^3 + 3x^2 + 4x}{5x^2 + 4x + 1} \)

1.5. a) \(\lim_{x \to \infty} \frac{3 + x - 2x^2}{7x^4 - 3x^3 + 2x^2} \)

1.6. a) \(\lim_{x \to \infty} \frac{1 + 2x + 3x^2}{5 - 2x^4} \)

1.7. a) \(\lim_{x \to \infty} \frac{5 - 6x - 2x^2}{2x^5 + 3x^3 + x} \)

1.8. a) \(\lim_{x \to \infty} \frac{1 + x^2 - 3x^5}{x - 3x^2 + 2x^3} \)

1.9. a) \(\lim_{x \to \infty} \frac{5x^3 - 6x^2 + 3x + 2}{2x^4 + 3x^2 + 4} \)

1.10. a) \(\lim_{x \to \infty} \frac{6x^4 - x^3 + x^2}{2x - 3x^2} \)

1.11. a) \(\lim_{x \to \infty} \frac{4x + 5x^2}{7 - 3x + 5x^2} \)

1.12. a) \(\lim_{x \to \infty} \frac{2x - 1 + 4x^2}{3x^3 + 7x^2 - 2} \)

1.13. a) \(\lim_{x \to \infty} \frac{3 - 2x + x^3}{2x^4 - 5x^2 + 4} \)

1.14. a) \(\lim_{x \to \infty} \frac{3x^2 - 5x - 4x^4}{4x^2 - 2x + 3} \)

1.15. a) \(\lim_{x \to \infty} \frac{2 - 3x - 7x^2}{3x^4 + 5x^3 + x^2} \)

1.16. a) \(\lim_{x \to \infty} \frac{4 + 2x^3 - 3x^4}{3 + 4x - 2x^2} \)

1.17. a) \(\lim_{x \to \infty} \frac{4 - 5x + 6x^2}{3x^4 - 5x^3 + 2x} \)

1.18. a) \(\lim_{x \to \infty} \frac{2 - x^2 - 7x^4}{5 - x^2} \)

Производные, дифференциация, интегрирование, вариации, анализ функций, решение дифференциальных уравнений, теория чисел, теория вероятностей, статистика и другие разделы математики.
1.19.

а) \(\lim_{{x \to \infty}} \frac{6x - 2x^2 + 6x^3}{4x^3 - 5x^2 - 2x + 1} \)

б) \(\lim_{{x \to 3}} \frac{x^2 - 2x - 3}{x^2 - 4x + 3} \)

1.20.

а) \(\lim_{{x \to \infty}} \frac{2x^5 + 3x^3 - 2x^2}{4x^5 - 3x^2 - 8} \)

б) \(\lim_{{x \to 1}} \frac{1 - x^3}{x^2 - 5x + 4} \)

1.21.

а) \(\lim_{{x \to \infty}} \frac{3x + 1 - 5x^2}{2 + 6x + 5x^2} \)

б) \(\lim_{{x \to 1}} \frac{x^2 - 1}{x^2 - 4x - 5} \)

1.22.

а) \(\lim_{{x \to \infty}} \frac{3x^4 + 4x^2 - 2x}{2 + 6x + 5x^2} \)

б) \(\lim_{{x \to 1}} \frac{x^2 - 1}{x^2 - 4x - 5} \)

1.23.

а) \(\lim_{{x \to \infty}} \frac{3 + 2x^2 - 3x^4}{4x^3 + 5x^2 - 2x} \)

б) \(\lim_{{x \to 1}} \frac{x^2 - 2x}{x^2 - 4x - 5} \)

1.24.

а) \(\lim_{{x \to \infty}} \frac{2 - 5x - 2x^3}{6x^2 - 4x + 2} \)

б) \(\lim_{{x \to 1}} \frac{x^2 - 5x + 6}{x^2 - 5} \)

1.25.

а) \(\lim_{{x \to \infty}} \frac{3 - 2x - 4x^2}{2x^4 + 5x^3 - x^2} \)

б) \(\lim_{{x \to 4}} \frac{x^2 - 2x}{x^2 + 2x - 8} \)

1.26.

а) \(\lim_{{x \to \infty}} \frac{4 - 3x + 2x^2}{7x^5 - 3x^3 + 8x} \)

б) \(\lim_{{x \to 2}} \frac{x^2 - 3x + 2}{x^2 - 2x - 2} \)

1.27.

а) \(\lim_{{x \to \infty}} \frac{5 - 2x^2 - x^5}{1 - 2x^2 + 5x^3} \)

б) \(\lim_{{x \to 1}} \frac{x^2 - 1}{x^2 + x - 12} \)

1.28.

а) \(\lim_{{x \to \infty}} \frac{3x^3 - 2x^2 - 4x + 1}{3x^4 - 4x^2 + 6} \)

б) \(\lim_{{x \to 3}} \frac{x^2 - 5x + 6}{x^2 - x} \)

1.29.

а) \(\lim_{{x \to \infty}} \frac{6x^4 + 2x^3 - 5x^2}{x^2 + 3x - 4} \)

б) \(\lim_{{x \to 1}} \frac{1}{x^2 + 3x - 4} \)

Задание 2. Найти производные.

2.1.

а) \(y = e^x \cdot \arccos x \)

б) \(y = \frac{1 - \cos x}{2x + 3} \)

в) \(y = \arctg (\ln x) \)

g) \(y = 2\sqrt{4x + 3} - \frac{3}{\sqrt{x^2 + 1}} \)

д) \(y = \frac{\sin 3x}{\cos^2 x} \)

2.2.

а) \(y = \sqrt{x^5} \cdot \ln x \)

б) \(y = \frac{x^3 - 3}{\arctg x} \)

в) \(y = \cos^3 x \cdot 2^{\arcsin x} \)

г) \(y = \sqrt{1 + x^2} \)

д) \(y = \frac{1}{\sqrt{1 - x}} \)

е) \(y = \frac{1}{\tg^5 5x} \)
2.3. a) \(y = \log_3 x \cdot \arcsin x \)

b) \(y = \frac{\sin x}{1 + \cos x} \)

v) \(y = \sqrt{x^3 \cdot \ln x + \frac{1}{x}} \)

r) \(y = (e^{\cos x} + 3)^4 \)

\(\lambda \) \(y = 5^x + \arctg x \)

2.5. a) \(y = x^{10} \cdot \log_2 x \)

b) \(y = \frac{2^x}{\cos x + 5} \)

v) \(y = \frac{\sin^4 x}{\ctg x} \)

r) \(y = \ln \left(x + \sqrt{x^2 + 1} \right) \)

\(\lambda \) \(y = e^{-3x} \cdot \arcsin 2x \)

2.7. a) \(y = \sqrt[5]{x^3} \cdot \sin x \)

b) \(y = \frac{4 + x^3}{x - \ctg x} \)

v) \(y = \tan^2 x + \frac{1}{\cos x} \)

r) \(y = \sqrt{2x - x^2 + \frac{1}{3} x^3} \)

\(\lambda \) \(y = e^{2x} \cdot \ln (1 + x^2) \)

2.9. a) \(y = \sqrt[5]{x} \cdot 3^x \)

b) \(y = \frac{x^2 + 5x - 6}{\ln x} \)

v) \(y = \frac{1}{2 \sin^2 x} + \ln (\tan x) \)

r) \(y = e^{1/\cos x} \)

\(\lambda \) \(y = 2 \sqrt{\frac{x - 1}{x + 1}} \)

2.4. a) \(y = \frac{3}{x^2} \cdot \cos x \)

b) \(y = \frac{x + e^x}{x - e^x} \)

v) \(y = \frac{\sqrt{1 - x^2}}{x} \)

r) \(y = 3 \arctg \frac{x}{3} + e^{\arcsin x} \)

\(\lambda \) \(y = 3 \sin \frac{x}{3} \)

2.6. a) \(y = 3^x \cdot \tg x \)

b) \(y = \frac{2 - x}{x^2 + \sqrt{x}} \)

v) \(y = (3 + 2x^2)^5 \)

r) \(y = \sqrt[3]{\ctg 1 \cdot x} \)

\(\lambda \) \(y = e^{\arctg \sqrt{x}} \)

2.8. a) \(y = \log_5 x \cdot \arccos x \)

b) \(y = \frac{e^x}{1 - x^2} \)

v) \(y = \left(x^5 + 3x + \frac{1}{x}\right)^{10} \)

r) \(y = 3 \sin 2x \cdot \cos^2 x \)

\(\lambda \) \(y = \sqrt{\ln (x^2 + 1)} \)

2.10. a) \(y = (x^3 + 3x^4) \cdot \log_3 x \)

b) \(y = \frac{1 + \cos x}{1 - \cos x} \)

v) \(y = \ctg^3 x - \frac{1}{\sin x} \)

r) \(y = \frac{\ln (x^2 + 2x)}{3x} \)

\(\lambda \) \(y = x \cdot 5^{\frac{1}{x}} \)
2.11. а) \(y = \frac{2}{3x^2} - \frac{x\sqrt{x}}{2} \)
б) \(y = \frac{1 + \cos x}{\arccos x} \)
в) \(y = \ln^3 (1 + e^{3x}) \)
г) \(y = \arctg \frac{1}{x} \)
д) \(y = \ln \left(e^x + \sqrt{1 + e^{2x}}\right) \)

2.12. а) \(y = \frac{2x}{1 + 2x} \)
б) \(y = \left(1 + \sqrt[3]{x^3}\right) \arcsin x \)
в) \(y = 3\arcsin^2 x \)
г) \(y = \ln \arcsin \sqrt{1 - e^{2x}} \)
д) \(y = \frac{\cos x}{\sin^2 x} + \ln (\sin x) \)

2.13. а) \(y = 3\sqrt[3]{x} \arccos x \)
б) \(y = \frac{1}{6(1 - x^2)} \)
в) \(y = \sin^6 x + \cos^6 x \)
г) \(y = \frac{\ln \sqrt{2 + \tan x}}{\sqrt{2 - \tan x}} \)
д) \(y = \frac{4}{3} \sqrt[4]{x - 1} \)

2.14. а) \(y = \frac{4}{x^3} + 5\sqrt[3]{x^4} + 2 \)
б) \(y = \frac{\arctg x}{1 + x^2} \)
в) \(y = \sqrt[4]{1 + \ln x} \)
г) \(y = \arctg \frac{1}{x} + \frac{\sqrt{x^2 - 1}}{x} \)
д) \(y = x + \ln \sqrt{1 + x} - \sqrt{1 - x} \)

2.15. а) \(y = \frac{1 + x^2}{2} \arctg x \)
б) \(y = \frac{1 + \sqrt{x}}{1 - \sqrt{x}} \)
в) \(y = \frac{\sqrt[3]{(1 + \ln x)^3}}{3} \)
г) \(y = \cos^2 x - 2 \ln \cos x \)
д) \(y = \ln \sin \frac{2x + 4}{x + 1} \)

2.16. а) \(y = x^2\sqrt{x} + \frac{1}{4x^2} - 6x \)
б) \(y = \frac{\ln x}{\sin x} + x^2 \)
в) \(y = \frac{1}{3} \arctg \frac{x}{3} + e^{\sin x} \)
г) \(y = (1 + \ln \sin 2x)^2 \)
д) \(y = \ln \tan \frac{x}{2} - \frac{x}{\sin x} \)

2.17. а) \(y = 3\sqrt[3]{x} - 2\sqrt[3]{x^3} + 4 \)
б) \(y = \frac{x}{4} (\tan x - \cot x) \)
в) \(y = \frac{2}{3} \sqrt[3]{(1 + \ln x)^3} \)
г) \(y = 5e^{-x^2} + \frac{1}{\arctg x} \)
д) \(y = \log_4 \log_2 \tan x \)

2.18. а) \(y = \frac{\sqrt{x}}{1 + \sqrt{x}} \)
б) \(y = \left(x^2 + \frac{1}{x}\right) \log_3 x \)
в) \(y = \frac{x}{2} (\cos \ln x + \sin \ln x) \)
г) \(y = \arccos \frac{1}{x^2} \)
д) \(y = \sqrt{\cot x} + \frac{1}{3} \sqrt{\tan^3 x} \)
2.19. а) \(y = \frac{1}{2} \tan x \arctan x \)
б) \(y = \frac{3e^x}{\sqrt{x}} \)
в) \(y = \ln \cos \frac{2x + 3}{2x + 1} \)
г) \(y = 3\csc^2 x \)
д) \(y = \frac{3}{2} \sin^2 x + \ln (\tan x) \)

2.20. а) \(y = \frac{2}{x^2 - 4x + 5} \)
б) \(y = x \sqrt{x} \arctan x \)
в) \(y = e^{\tan 2x} \ln (1 - x^3) \)
г) \(y = 3 \sin^2 x + \frac{1}{\cos x} \)
д) \(y = \ln \arctan \sqrt{e^{4x} - 1} \)

2.21. а) \(y = \frac{\ln x}{2x + 1} \)
б) \(y = (1 - 2x^2) \arctan x \)
в) \(y = \sqrt[3]{\tan 3x} \)
г) \(y = \ln^2 x - \ln \ln x \)
д) \(y = \arcsin e^x - \sqrt{1 - e^{2x}} \)

2.22. а) \(y = 5^x (\tan x + \cot x) \)
б) \(y = \frac{2x + 1}{4 - x^2} \)
в) \(y = \sqrt{\arctan^2 x} \)
г) \(y = e^{5x} - \frac{1}{2} \tan 4x + \frac{1}{4} x^4 \)
д) \(y = \ln \sqrt{e^{5x} - e^{-5x}} \)

2.23. а) \(y = \frac{2}{x^3} + \frac{6}{\sqrt{x}} + \frac{3x^4}{4} \)
б) \(y = \frac{\cos x}{1 + \sin x} \)
в) \(y = \cos^3 x \cdot 5 \tan x \)
г) \(y = 2^{\csc \frac{1}{2}} \)
д) \(y = x \arctan x + \ln \sqrt{1 + x^2} \)

2.24. а) \(y = 2x \arcsin x \)
б) \(y = \frac{1 - 10^x}{1 + 10^x} \)
в) \(y = \lg \ln \cot x \)
г) \(y = \sqrt{\ln x + 1} + \ln (\sqrt{x} + 1) \)
д) \(y = \frac{\arctan \sqrt{x} - \sqrt{x}}{x} \)

2.25. а) \(y = \arctan x \log_3 x \)
б) \(y = \frac{1 + e^x}{1 - e^x} \)
в) \(y = \sqrt{\frac{2x + 1}{x}} \)
г) \(y = \arctan (\ln x) + \ln (\arctan x) \)
д) \(y = -\frac{1}{2 \sin^2 x} + \ln (\arcsin x) \)

2.26. а) \(y = 5^x \arctan x \)
б) \(y = \frac{\cos x}{2 - \sin x} \)
в) \(y = \ln^3 x^2 \)
г) \(y = \frac{\cos^2 x}{\tan x} \)
д) \(y = \ln \left(e^x - \sqrt{1 - e^{3x}} \right) \)
2.27. a) \(y = x^3e^x \)

б) \(y = \frac{2 + x^5}{x + \tan x} \)

c) \(y = \cos^5 2x \)

g) \(y = \frac{\ln(x^2 - 7x)}{2x} \)

d) \(y = (3x - 2)^2 \arccos \frac{1}{3x - 2} \)

2.28. a) \(y = \frac{5}{x^4} \cos x \)

б) \(y = \frac{3^x}{1 - 3^x} \)

c) \(y = e^{\frac{1}{\sin x}} \)

g) \(y = \sin^2 x + 2 \ln \sin x \)

d) \(y = x - \ln \sqrt{\frac{1 - x}{1 + x}} \)

2.29. a) \(y = \frac{1 - x^2}{2} \arctg x \)

б) \(y = \frac{\sqrt{x}}{2e^x} \)

c) \(y = \frac{\sqrt[5]{1 - x^3}}{x} \)

2.30. a) \(y = 2x^5 \arccos x \)

б) \(y = \frac{\sqrt{x}}{1 - \sqrt{x}} \)

c) \(y = \ln^3 x + \ln \ln x \)

g) \(y = \frac{4}{\sqrt{x^2 + 2}} \sqrt{\frac{x^2 + 2}{x^2 - 1}} \)

d) \(y = \ln \left(2x - \sqrt{5x^2 - 4x}\right) \)

Задание 3. Провести полное исследование функции и построить её график.

3.1. a) \(y = \frac{x^2}{4}(x^2 - 8) \)

б) \(y = \frac{x^3 + 4}{x^2} \)

3.2. a) \(y = 3x^4 - 4x^3 \)

б) \(y = \frac{2}{x^2 + 2x} \)

3.3. a) \(y = -\frac{1}{16}(x^2 - 4)^2 \)

б) \(y = \frac{x^2 - 4x + 1}{x - 4} \)

3.4. a) \(y = \frac{x^3}{27}(x - 4) \)

б) \(y = \frac{4x}{(x + 1)^2} \)

3.5. a) \(y = \frac{x^2}{64}(32 - x^2) \)

б) \(y = \frac{3x^4 + 1}{x^3} \)

3.6. a) \(y = \frac{x^3}{16}(8 - 3x) \)

б) \(y = \frac{4}{3 + 2x - x^2} \)

3.7. a) \(y = \frac{1}{9}(x^2 - 3)^2 \)

б) \(y = \frac{3x - 2}{x^3} \)

3.8. a) \(y = \frac{x^2}{27}(x^2 - 18) \)

б) \(y = \frac{x^2 - 3x + 3}{x - 1} \)

3.9. a) \(y = \frac{1}{8}(3x^5 - 5x^3) \)

б) \(y = \frac{8(x - 1)}{(x + 1)^2} \)
3.10. \(a) \ y = \frac{x^4}{64}(x - 5) \)

3.11. \(a) \ y = x^4 - 8x^3 + 16x^2 \)

3.12. \(a) \ y = \frac{3}{2}(x^4 - 2x^2) \)

3.13. \(a) \ y = x^2(x - 2)^2 \)

3.14. \(a) \ y = \frac{x^3}{9}(x + 4) \)

3.15. \(a) \ y = \frac{x^3}{72}(x - 8) \)

3.16. \(a) \ y = (x + 1)^2(x - 1)^2 \)

3.17. \(a) \ y = \frac{1}{8}x^2(x - 4)^2 \)

3.18. \(a) \ y = \frac{27}{32}x^2(2 - x) \)

3.19. \(a) \ y = 3x^4 + 4x^3 \)

3.20. \(a) \ y = \frac{x^3(x^2 - 15)}{81} \)

3.21. \(a) \ y = \frac{x^3}{9}(4 - x) \)

3.22. \(a) \ y = \frac{x^3}{27}(15 - x^2) \)

3.23. \(a) \ y = \frac{16}{27}(x + 1)(1 - x)^3 \)

3.24. \(a) \ y = \frac{36}{x^3}(x + 8) \)

3.25. \(a) \ y = \frac{x^3 - 8x^2 - 9}{5} \)

3.26. \(a) \ y = \frac{x^3}{27}(x + 4) \)

3.27. \(a) \ y = \frac{1}{8}x^2(x + 4)^2 \)

3.28. \(a) \ y = \frac{x^4}{64}(x + 5) \)

3.29. \(a) \ y = \frac{x^3}{27}(x^2 - 15) \)

3.30. \(a) \ y = \frac{x^3}{36}(8 - x) \)

\(b) \ y = \frac{x}{x^2 - 4} \)

\(b) \ y = \frac{x^2 - x + 1}{x - 1} \)

\(b) \ y = \frac{4x^2}{x^2 + 3} \)

\(b) \ y = \frac{x^2 + 9}{x^2 - 4 - x^3} \)

\(b) \ y = \frac{x^2 + 6x + 3}{x^2} \)

\(b) \ y = \frac{x + 4}{(x - 1)^2} \)

\(b) \ y = \left(1 + \frac{1}{x}\right)^2 \)

\(b) \ y = \frac{3 - x^2}{x + 2} \)

\(b) \ y = \frac{2x^3 + 1}{x^2} \)

\(b) \ y = \frac{2}{x^2 + 4} \)

\(b) \ y = \frac{x^3 - 32}{x^2} \)

\(b) \ y = \frac{1 - 2x^2}{x^2} \)

\(b) \ y = \frac{8}{x^2 + 2x - 3} \)

\(b) \ y = -\left(\frac{x}{x + 2}\right)^2 \)

\(b) \ y = \frac{x^2 - 1}{x^2 + x + 1} \)

\(b) \ y = \frac{x^2 - 1}{x^3} \)

\(b) \ y = \frac{x^2 + 4x + 1}{x + 4} \)

\(b) \ y = \left(\frac{x}{x - 2}\right)^2 \)
Задание 4. Найти неопределённые интегралы.

4.1. а) ∫ \(\frac{(x - 1)^2}{\sqrt{x}}\) dx

 б) ∫ \(2 \sin 6x + \cos \frac{x}{4}\) dx

 в) ∫ \((4 - 3x) e^{-5x}\) dx

4.2. а) ∫ \(\left(\frac{x^2}{3} - \frac{3}{x\sqrt{x}}\right)\) dx

 б) ∫ \((6e^{-3x} + 3\cos 2x)\) dx

 в) ∫ \((4 - 3x) e^{-5x}\) dx

4.3. а) ∫ \(\left(\frac{4}{5x} - \frac{2}{x^3} + 4\sqrt[3]{x}\right)\) dx

 б) ∫ \((6e^{2x} + \sin \frac{x}{2})\) dx

 в) ∫ \((2 + 3x) e^{2x}\) dx

4.4. а) ∫ \(\left(3\sqrt{x} + \frac{1}{x^2} - \frac{1}{3x}\right)\) dx

 б) ∫ \(\cos 4x + \frac{1}{e^x}\) dx

 в) ∫ \((4x - 2) \cos 2x dx\)

4.5. а) ∫ \(\left(\frac{3}{\sqrt{x}} + x\sqrt{x}\right)\) dx

 б) ∫ \((2 \sin 6x + 4e^{\frac{x}{2}})\) dx

 в) ∫ \((4 - 16x) \sin 4x dx\)

4.6. а) ∫ \(2^x \left(5 - \frac{2^{-x}}{\sqrt{x}}\right)\) dx

 б) ∫ \((2 \cos 3x + e^{-5x})\) dx

 в) ∫ \((5x - 2) \cos 10x dx\)

4.7. а) ∫ \(\left(4\sqrt{x} - \frac{5}{2\sqrt{x}} + 1\right)\) dx

 б) ∫ \((4 \sin 4x - 3e^{\frac{x}{3}})\) dx

 в) ∫ \((1 - 6x) e^{2x} dx\)

4.8. а) ∫ \(\left(\frac{\sqrt{x} - 2}{x}\right)^2\) dx

 б) ∫ \(\left(\cos \frac{x}{2} + \frac{5}{e^{2x}}\right)\) dx

 в) ∫ \((3x + 2) \cos 3x dx\)

4.9. а) ∫ \(\frac{7x + x^2 - \sqrt{x}}{x^2} dx\)

 б) ∫ \(\left(10 \sin \frac{x}{2} + \frac{3}{e^x}\right) dx\)

 в) ∫ \((x - 5) \sin 5x dx\)
4.10. a) \(\int e^x \left(\frac{e^{-x}}{\sqrt{x^3}} - 8 \right) \, dx \)

b) \(\int (2 \cos 6x - 2e^{\frac{x}{3}}) \, dx \)

b) \(\int (2 - 4x) \sin 2x \, dx \)

4.11. a) \(\int \left(\sqrt{x} - \frac{2}{\sqrt{x}} \right)^2 \, dx \)

b) \(\int \left(\frac{7}{5 \sin^2 x} + 2e^{-8x} \right) \, dx \)

b) \(\int (3 - 2x) \cos \frac{x}{2} \, dx \)

4.12. a) \(\int \left(\frac{2 - x}{x^3} \right)^2 \, dx \)

b) \(\int \left(\frac{1}{2 \sin^2 x} - 4e^{\frac{x}{2}} \right) \, dx \)

b) \(\int (4x - 3) \cos 4x \, dx \)

4.13. a) \(\int \left(\frac{x^4}{2} - \frac{4}{\sqrt{x}} \right) \, dx \)

b) \(\int (2 \sin 6x + e^{\frac{x}{5}}) \, dx \)

b) \(\int e^{-3x} (2 - 9x) \, dx \)

4.14. a) \(\int \frac{x^3 \sin x + 7x}{x^3} \, dx \)

b) \(\int \left(\cos \frac{x}{3} - \frac{2}{e^x} \right) \, dx \)

b) \(\int e^{5x} (3x - 8) \, dx \)

4.15. a) \(\int \frac{7 - 4x^2 \sin x}{x^2} \, dx \)

b) \(\int \left(5 \cos \frac{2x}{5} + \frac{1}{e^{2x}} \right) \, dx \)

b) \(\int (4x + 5) e^{\frac{x}{7}} \, dx \)

4.16. a) \(\int \frac{\sqrt{x} - 3x^5 + 1}{2x} \, dx \)

b) \(\int \left(\frac{1}{e^{2x}} + 2 \cos \frac{2x}{3} \right) \, dx \)

b) \(\int (2 - x) e^{-x} \, dx \)

4.17. a) \(\int \left(6x^5 - \frac{1}{x\sqrt{x}} \right) \, dx \)

b) \(\int \left(e^{10x} - \frac{10}{\sin^2 10x} \right) \, dx \)

b) \(\int (5x + 6) \cos 2x \, dx \)

4.18. a) \(\int \frac{x - 2x^2 \cos x}{x^2} \, dx \)

b) \(\int \left(\cos \frac{x}{3} + \frac{2}{\cos^2 3x} \right) \, dx \)

b) \(\int (3x - 2) \sin 6x \, dx \)
4.19. а) $\int \left(5x^4 - \frac{1}{\sqrt{x}} + \frac{3}{x^2} \right) dx$

б) $\int (2 \sin 8x + e^{5x})

в) $\int (2x - 3) \cos 4x
dx$

4.20. а) $\int \frac{x^2 + x^3 - 3}{x} dx$

б) $\int \left(2 \sin^2 3x + \frac{4}{e^{4x}} \right) dx$

в) $\int (4x + 7) \sin \frac{x}{3} dx$

4.21. а) $\int \frac{3x^3 + \sqrt{x} - 2}{x} dx$

б) $\int (\cos^2 5x - e^{8x}) dx$

в) $\int (2x - 5) \cos \frac{x}{4} dx$

4.22. а) $\int \left(7x^6 - \frac{3}{x^3} + \frac{2}{3x} \right) dx$

б) $\int \left(\frac{14}{\cos^2 7x} - e^{\frac{x}{7}} \right) dx$

в) $\int (8 - 3x) \sin 3x
dx$

4.23. а) $\int \frac{3x + 2x^2 \cos x}{x^2} dx$

б) $\int \left(\frac{5}{\sin^2 10x} + 8e^{-\frac{x}{5}} \right) dx$

в) $\int (x + 5) \sin \frac{x}{2} dx$

4.24. а) $\int \frac{3x^3 5^x - 5}{x^3} dx$

б) $\int \left(\cos \frac{x}{5} + 9e^{3x} \right) dx$

в) $\int (x - 10) \sin 7x
dx$

4.25. а) $\int \frac{(\sqrt{x} + 2)^2}{x^2} dx$

б) $\int \left(2 \sin \frac{x}{5} - \frac{12}{e^{3x}} \right) dx$

в) $\int (3 + 4x) e^{5x} dx$

4.26. а) $\int \frac{(x + 2)^2}{2\sqrt{x}} dx$

б) $\int (3e^{-2x} - 5 \cos 4x) dx$

в) $\int (2x - 1) e^{-3x} dx$

4.27. а) $\int \left(6\sqrt{x} - \frac{2}{x^3} + \frac{1}{2x} \right) dx$

б) $\int (4 \cos 7x - 3e^{\frac{x}{7}}) dx$

в) $\int (5 - 2x) \sin 9x
dx$
4.28. а) \(\int \left(2\sqrt{x} - \frac{3}{4\sqrt{x}} - 5 \right) dx \)

б) \(\int \left(\cos \frac{x}{4} - \frac{3}{e^{-4x}} \right) dx \)

в) \(\int (2x - 4) \sin 6x \, dx \)

4.29. а) \(\int \left(3\sqrt{x} + \frac{1}{\sqrt{x}} \right)^2 \, dx \)

б) \(\int \left(\frac{2}{\cos^2 x} + 3 e^{-\frac{x}{2}} \right) \, dx \)

в) \(\int e^{4x} (1 - 5x) \, dx \)

4.30. а) \(\int \frac{3\sqrt{x} + x^6 - 8}{4x} \, dx \)

б) \(\int \left(2e^{-6x} - \frac{4}{\cos^2 5x} \right) \, dx \)

в) \(\int (7x + 2) \sin 5x \, dx \)

Задание 5. Вычислить определенные интегралы.

5.1. а) \(\int_0^1 \frac{x^4 \, dx}{x^{10} + 3} \)

б) \(\int_0^e x^2 \ln x \, dx \)

5.2. а) \(\int_0^e \sqrt{\sin x} \cos x \, dx \)

б) \(\int_0^e \ln x \, dx \)

5.3. а) \(\int_{e^2}^e \frac{dx}{x \ln^2 x} \)

б) \(\int_0^\pi x \cos \left(\frac{x}{4} \right) \, dx \)

5.4. а) \(\int_0^2 \frac{x \, dx}{16 + x^4} \)

б) \(\int_0^1 x \arctg x \, dx \)

5.5. а) \(\int_0^{\pi/2} \frac{x \, dx}{\sqrt{4 - x^4}} \)

б) \(\int_0^{\pi/2} x \sin 4x \, dx \)

5.6. а) \(\int_0^{\pi/2} \frac{\sin x}{1 + \cos x} \, dx \)

б) \(\int_0^1 x \, e^{-2x} \, dx \)

5.7. а) \(\int_0^1 \frac{x \, dx}{\sqrt{x^2 + 3}} \)

б) \(\int_0^1 x 3^x \, dx \)

5.8. а) \(\int_0^1 \frac{\cos x}{\sin x + 1} \, dx \)

б) \(\int_0^1 \frac{\ln x}{x^2} \, dx \)
5.9. a) $\int_{2}^{6} \sqrt{x - 2} \, dx$

5.10. a) $\int_{1}^{e} \frac{dx}{x (\ln x + 2)}$

5.11. a) $\int_{0}^{1} \frac{x^3 \, dx}{x^8 + 5}$

5.12. a) $\int_{e^3}^{\pi} \sqrt{\cos x \sin x} \, dx$

5.13. a) $\int_{e^2}^{\pi/3} \frac{dx}{x \ln^4 x}$

5.14. a) $\int_{0}^{1} \frac{x^2 \, dx}{9 + x^6}$

5.15. a) $\int_{0}^{\pi/4} \frac{x \, dx}{\sqrt{16 + x^4}}$

5.16. a) $\int_{0}^{2} \frac{\sin x}{1 - \cos x} \, dx$

5.17. a) $\int_{0}^{3} \frac{x^3 \, dx}{\sqrt{x^4 + 9}}$

5.18. a) $\int_{0}^{e^4} \frac{\cos x}{\sin x + 3} \, dx$

5.19. a) $\int_{-1}^{e^4} \sqrt{x + 5} \, dx$

5.20. a) $\int_{e^2}^{1} \frac{dx}{x (\ln x - 1)}$

5.21. a) $\int_{0}^{1} \frac{x^2 \, dx}{x^6 - 9}$

6) $\int_{0}^{\pi/6} x \sin \left(\frac{x}{6} \right) \, dx$

6) $\int_{0}^{1} \arctg x \, dx$

6) $\int_{0}^{e^2} x^4 \ln x \, dx$

6) $\int_{e}^{e} x \ln x \, dx$

6) $\int_{0}^{e} \frac{x \cos \left(\frac{3x}{2} \right)}{\ln x} \, dx$

6) $\int_{0}^{3} x \arctg x \, dx$

6) $\int_{0}^{1} \frac{x^2 \, dx}{x^8 + 5}$

6) $\int_{0}^{\pi/3} x \cos \left(\frac{3x}{2} \right) \, dx$

6) $\int_{0}^{\pi/6} x \sin \left(\frac{x}{6} \right) \, dx$

6) $\int_{0}^{1} x \ln x \, dx$

6) $\int_{0}^{e^2} x^3 \ln x \, dx$

6) $\int_{0}^{e^2} x^3 \ln x \, dx$
5.22. а) \[\int_{0}^{\frac{\pi}{2}} \frac{\sin x}{\sqrt{\cos x}} \, dx \] б) \[\int_{0}^{\frac{\pi}{2}} x \ln x \, dx \]
5.23. а) \[\int_{e}^{e^3} \frac{dx}{x \ln^3 x} \] б) \[\int_{0}^{1/2} x \cos \left(\frac{2x}{3} \right) \, dx \]
5.24. а) \[\int_{0}^{4} \frac{x^3 \, dx}{4 + x^5} \] б) \[\int_{0}^{1/2} x \arctg 2x \, dx \]
5.25. а) \[\int_{0}^{1} \frac{x^2 \, dx}{\sqrt{9 - x^6}} \] б) \[\int_{0}^{\pi/3} x \sin 3x \, dx \]
5.26. а) \[\int_{0}^{2} \frac{\cos x}{1 + \sin x} \, dx \] б) \[\int_{0}^{2} x e^{3x} \, dx \]
5.27. а) \[\int_{0}^{2} \frac{x^2 \, dx}{\sqrt{x^3 + 1}} \] б) \[\int_{0}^{2} x 2^{-x} \, dx \]
5.28. а) \[\int_{0}^{\pi/6} \frac{\sin x}{\cos x + 2} \, dx \] б) \[\int_{1}^{\pi/2} \frac{\ln x}{x^4} \, dx \]
5.29. а) \[\int_{0}^{\pi/3} \sqrt{x + 1} \, dx \] б) \[\int_{0}^{1/3} x \sin \left(\frac{x}{3} \right) \, dx \]
5.30. а) \[\int_{e}^{e^3} \frac{dx}{x (\ln x + 1)} \] б) \[\int_{0}^{\arctan 3x} x \, dx \]

Задание 6. Вычислить площадь фигуры, ограниченной линиями. Сделать чертёж.

6.1. \(y = 2x - x^2, y = -x \) 6.2. \(y = x^2 - 4x, y = x \)
6.3. \(y = \frac{4}{x}, y = 5 - x \) 6.4. \(y = \frac{x^2}{4}, y = 5 - x^2 \)
6.5. \(y = x^2, y = 2 - x^2 \) 6.6. \(y = 1 - x^2, y = x - 1 \)
6.7. \(y = 4 - x^2, y = x^2 - 2x \) 6.8. \(y = (x - 2)^2, y = x \)
6.9. \(y = (x - 2)^2, x = 0, y = 0 \) 6.10. \(y = \frac{1}{x}, y = x, x = 2 \)
6.11. \(y = (x + 1)^2, y = 0, x = 0 \)
6.12. \(y = e^x, y = e^{-x}, x = 1 \)
6.13. \(y = \sqrt{x + 4}, y = 0, x = 0 \)
6.14. \(y = (x + 2)^2, y = -x \)
6.15. \(y = 0, y = x\sqrt{9 - x^2}, 0 \leq x \leq 3 \)
6.16. \(y = \sqrt{2 - x}, y = 0, x = 0 \)
6.17. \(y = -x^2 + 2x + 3, y = 2x + 2 \)
6.18. \(y = x^2 - 3x, y = x \)
6.19. \(y = \sqrt{2x}, x = 8, y = 0 \)
6.20. \(y = 3 - 2x, y = x^2 \)
6.21. \(y = x^2, y = 2x^2, x = 3 \)
6.22. \(y = \frac{6}{x}, y = 7 - x \)
6.23. \(y = x\sqrt{4 - x^2}, y = 0, 0 \leq x \leq 2 \)
6.24. \(y = x^2 + 4x, y = -x \)
6.25. \(y = 4 - x^2, y = 2 - x \)
6.26. \(y = x^2 + 2x - 3, y = 2x - 2 \)
6.27. \(y = -\sqrt{x}, x = 9, y = 0 \)
6.28. \(y = x^2 - 2, y = 6 - x^2 \)
6.29. \(y = -\frac{2}{x}, y = x - 3 \)
6.30. \(y = \frac{x^2}{3}, y = 4 - \frac{2}{3}x^2 \)
ПРИЛОЖЕНИЯ

Приложение 1.

Таблица производных

\[
\begin{align*}
(c)' &= 0 \quad (c - \text{число}) \\
(x^n)' &= nx^{n-1} \\
(e^x)' &= e^x \\
(a^x)' &= a^x \ln a \\
(tg x)' &= \frac{1}{\cos^2 x} \\
(ctg x)' &= -\frac{1}{\sin^2 x} \\
(u + v)' &= u' + v' \\
(uv)' &= u'v + uv' \\
(u/v)' &= \frac{u'v - uv'}{v^2} \\
x' &= 1 \\
(\sqrt{x})' &= \frac{1}{2\sqrt{x}} \\
(\ln x)' &= \frac{1}{x} \\
(x^n)' &= \frac{1}{x} \\
(\sin x)' &= \cos x \\
(\frac{1}{x})' &= -\frac{1}{x^2} \\
(x)' &= 1 \\
(x^2)' &= 2x \\
(\log_a x)' &= \frac{1}{x \ln a} \\
(\arcsin x)' &= \frac{1}{\sqrt{1-x^2}} \\
(\arccos x)' &= -\frac{1}{\sqrt{1-x^2}} \\
(\arctg x)' &= \frac{1}{1+x^2} \\
(\arccotg x)' &= -\frac{1}{1+x^2} \\
(c u)' &= cu' \quad (c - \text{число})
\end{align*}
\]
Приложение 2.

Таблица интегралов

\[
\begin{align*}
\int 0 \, dx &= C \\
\int x^n \, dx &= \frac{x^{n+1}}{n+1} + C \quad (n \neq -1) \\
\int \frac{dx}{x} &= \ln |x| + C \\
\int \frac{dx}{x^2} &= -\frac{1}{x} + C \\
\int e^x \, dx &= e^x + C \\
\int \cos x \, dx &= \sin x + C \\
\int \frac{dx}{\cos^2 x} &= \tan x + C \\
\int \frac{dx}{\sin^2 x} &= -\cot x + C \\
\int \frac{dx}{x^2 + a^2} &= \frac{1}{a} \arctg \frac{x}{a} + C \\
\int \frac{dx}{\sqrt{x^2 + k}} &= \ln |x + \sqrt{x^2 + k}| + C \\
\int \frac{dx}{\sqrt{x^2 - a^2}} &= \frac{1}{2a} \ln \left| \frac{x-a}{x+a} \right| + C \\
\int \frac{dx}{\sqrt{a^2 - x^2}} &= \arcsin \frac{x}{a} + C \\
\int F'(x) \, dx &= \int d(F(x)) = F(x) + C \\
\int u \, dv &= uv - \int v \, du \\
\int_a^b u \, dv &= uv \bigg|_a^b - \int_a^b v \, du
\end{align*}
\]
Приложение 3.

Таблица дифференциалов

<table>
<thead>
<tr>
<th>Формула</th>
<th>Пример</th>
</tr>
</thead>
<tbody>
<tr>
<td>$d(f(x)) = (f(x))' , dx$</td>
<td></td>
</tr>
<tr>
<td>$d(a) = 0$ (a — число)</td>
<td></td>
</tr>
<tr>
<td>$dx = -d(-x)$</td>
<td></td>
</tr>
<tr>
<td>$x^n , dx = \frac{1}{n+1} , d(x^{n+1})$</td>
<td></td>
</tr>
<tr>
<td>$xdx = \frac{1}{2} , d(x^2)$</td>
<td></td>
</tr>
<tr>
<td>$e^x , dx = d(e^x)$</td>
<td></td>
</tr>
<tr>
<td>$a^x , dx = \frac{1}{\ln a} , d(a^x)$</td>
<td></td>
</tr>
<tr>
<td>$\frac{dx}{\sqrt{1-x^2}} = d(\arcsin x)$</td>
<td></td>
</tr>
<tr>
<td>$\frac{dx}{1+x^2} = d(\arctg x)$</td>
<td></td>
</tr>
<tr>
<td>$\frac{dx}{\sqrt{1-x^2}} = -d(\arccos x)$</td>
<td></td>
</tr>
<tr>
<td>$\frac{dx}{\sqrt{1-x^2}} = -d(\arccos x)$</td>
<td></td>
</tr>
<tr>
<td>$dx = d(x - a)$</td>
<td></td>
</tr>
<tr>
<td>$dx = \frac{1}{b} , d(b , x)$</td>
<td></td>
</tr>
<tr>
<td>$dx = b , d \left(\frac{x}{b} \right)$</td>
<td></td>
</tr>
<tr>
<td>$dx = \frac{1}{a} , d(ax + b)$</td>
<td></td>
</tr>
<tr>
<td>$\frac{dx}{\sqrt{x}} = 2 , d(\sqrt{x})$</td>
<td></td>
</tr>
<tr>
<td>$\frac{dx}{\sec^2 x} = d(tg , x)$</td>
<td></td>
</tr>
<tr>
<td>$\frac{dx}{\csc^2 x} = -d(\text{ctg} , x)$</td>
<td></td>
</tr>
<tr>
<td>$\sin x , dx = d(\cos x)$</td>
<td></td>
</tr>
<tr>
<td>$\cos x , dx = d(\sin x)$</td>
<td></td>
</tr>
<tr>
<td>$\sin x , dx = -d(\cos x)$</td>
<td></td>
</tr>
<tr>
<td>$\cos x , dx = -d(\sin x)$</td>
<td></td>
</tr>
</tbody>
</table>
Рекомендуемая литература

1. Письменный Д. Т. Конспект лекций по высшей математике. Полный курс.
 Издательство Айрис-пресс, 2013.

2. Шипачёв В. С. Высшая математика. Учебное пособие для бакалавров.
 Издательство Юрайт, 2013.

Содержание

Контрольное домашнее задание №1 ... 3
Контрольное домашнее задание №2 ... 10

Приложения

Приложение 1. Таблица производных .. 24
Приложение 2. Таблица интегралов ... 25
Приложение 3. Таблица дифференциалов 26
Рекомендуемая литература .. 27